search for


Three-Dimensional Automated Crystal Orientation and Phase Mapping Analysis of Epitaxially Grown Thin Film Interfaces by Using Transmission Electron Microscopy
Applied Microscopy 2015;45:183-8
Published online September 30, 2015
© 2015 Korean Society of Microscopy.

Chang-Yeon Kim1,2, Ji-Hyun Lee2,3, Seung Jo Yoo2, Seok-Hoon Lee2, and Jin-Gyu Kim2,*

1Gangneung Center, Korea Basic Science Institute, Gangneung 25457, Korea, 2Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 34133, Korea, 3School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 54896, Korea
Correspondence to: Kim JG, Tel: +82-42-865-3961, Fax: +82-42-865-3939, E-mail:
Received September 3, 2015; Revised September 10, 2015; Accepted September 10, 2015.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to the miniaturization of semiconductor devices, their crystal structure on the nanoscale must be analyzed. However, scanning electron microscope-electron backscatter diffraction (EBSD) has a limitation of resolution in nanoscale and high-resolution electron microscopy (HREM) can be used to analyze restrictive local structural information. In this study, three-dimensional (3D) automated crystal orientation and phase mapping using transmission electron microscopy (TEM) (3D TEM-EBSD) was used to identify the crystal structure relationship between an epitaxially grown CdS interfacial layer and a Cu(InxGax-1)Se2 (CIGS) solar cell layer. The 3D TEM-EBSD technique clearly defined the crystal orientation and phase of the epitaxially grown layers, making it useful for establishing the growth mechanism of functional nano-materials.

Keywords : Cu(InxGax-1)Se2, Crystal structure, Electron backscattering diffraction, Solar cell, Transmission electron microscopy
Fig. 1. Fig. 1A indicates the energy dispersive spectroscopy line profiles used to confirm the chemical composition of the Cu(InxGax-1)Se2 layer. Fig. 1B shows the Ga/(In+Ga) ratio from the surface to the bulk region.
Fig. 2. (A) Bright field image of the Cu(InxGax-1)Se2 (CIGS)/CdS interface. (B?D) High-resolution images and their fast Fourier transform patterns (insets) of the CIGS/CdS interface using the specimen tilting technique.
Fig. 3. Two different indexing results for the tilting series fast Fourier transform images of the Cu(InxGax-1)Se2 (CIGS) crystal (A?C), and the simulated electron diffraction pattern of [100]CIGS (D).
Fig. 4. (A?C) Virtual bright field images from transmission electron microscopy-electron backscatter diffraction at the Cu(InxGax-1)Se2 (CIGS)/CdS interface. (D?F) Crystal orientation and inverse pole figure (IPF) maps. (G?I) Phase maps (red, CIGS; green, CdS) and the nano-beam electron diffraction patterns.
  1. Caro, LD, Giannini, C, Tapfer, L, Sch?nherr, HP, D?weritz, L, and Ploog, KG (1998). Validity of Vegard’s rule for the lattice parameter and the stiffness elastic constant ratios of the AlGaAs ternary compound. Solid State Commun. 108, 599-603.
  2. Darakchieve, V, Beckers, M, Xie, MY, Hultman, L, Monemar, B, Carlin, JF, Feltin, E, Gonschorek, M, and Grandjean, N (2008). Effects of strain and composition on the lattice parameters and applicability of Vegard’s rule in Al rich Al1-xInxN films grown on sapphire. J Appl Phys. 103, 103513-103517.
  3. Kaneshiro, J, Gaillard, N, Rocheleau, R, and Miller, E (2010). Advances in copper-chalcopyrite thin films for solar energy conversion. Sol Energy Mater Sol Cells. 94, 12-16.
  4. Kaur, I, Pandya, DK, and Chopra, KL (1980). Growth kinetics and polymorphism of chemically deposited CdS films. J Electrochem Soc. 127, 943-948.
  5. Kousuke, T, Mitsuru, O, Katsumasa, N, and Masaaki, F (2011). Preparation and characterization of Co/Pd epitaxial multilayer films with different orientations. Jpn J Appl Phys. 50, 073001-1-7.
  6. Lebedev, MV (2006). Interaction of the solvated hydrosulfide ions with GaAs surface at the semiconductor/electrolyte interfaces: chemical and electronic processes. Trends in Surface Science Research, Norris, CP, ed. New York: Nova Science Publishers, pp. 97-129.
  7. Lee, YH, Kim, KB, Kim, JG, Park, KB, Im, WB, and Kim, YI (2013). Crystallographic study of CIGS solar cell module via structural refinement. J Nanoelectron Optoelectron. 8, 575-578.
  8. Moeck, P, Rouvimov, S, Rauch, EF, V?ron, M, Kirmse, H, H?usler, I, Neumann, W, Bultreys, D, Maniette, Y, and Nicolopoulos, S (2011). High spatial resolution semi-automatic crystallite orientation and phase mapping of nanocrystals in transmission electron microscopes. Cryst Res Technol. 46, 589-606.
  9. Najanishi, T, and Ito, K (1994). Properties of chemical bath deposited CdS thin films. Sol Energy Mater Sol Cells. 35, 171-178.
  10. Rauch, EF, Portillo, J, Nicolopoulos, S, Bultreys, D, Rouvimov, S, and Moeck, P (2010). Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z Kristallogr. 225, 103-109.
  11. Vegard, L (1921). Die konstitution der mischkristalle und die raumf?llung der atome. Z Phys. 5, 17-26.
  12. W?rz, R, Marron, DF, Meeder, A, Rumberg, A, Badu, SM, Schedel-Niedrig, T, Bloeck, U, Schubert-Bischoff, P, and Lux-Steiner, MCh (2003). Formation of an interfacial MoSe2 layer in CVD grown CuGaSe2 based thin film solar cells. Thin Solid Films. 431?432, 398-402.
  13. Yoo, SJ, Kim, JG, Kim, CY, Kim, EM, Lee, JH, Kim, YM, Yoo, SJ, Kim, SB, and Kim, YJ (2012). Characterization of crystallographic properties of GaN thin film using automated crystal orientation mapping with TEM. Met Mater Int. 18, 997-1001.
  14. Zelaya-Angel, O, Alvarado-Gil, JJ, Lozada-Morales, R, Vargas, H, and Ferreira da Silva, A (1994). Band-gap shift CdS semiconductor by photoacoustic spectroscopy: evidence of a cubic to hexagonal lattice transition. Appl Phys Lett. 64, 291-293.

December 2018, 48 (4)
Full Text(PDF) Free

Social Network Service

Cited By Articles
  • CrossRef (0)

Funding Information
  • Science Central
  • CrossMark
  • Crossref TDM