search for




 

Three-Dimensional Automated Crystal Orientation and Phase Mapping Analysis of Epitaxially Grown Thin Film Interfaces by Using Transmission Electron Microscopy
Applied Microscopy 2015;45:183-8
Published online September 30, 2015
© 2015 Korean Society of Microscopy.

Chang-Yeon Kim1,2, Ji-Hyun Lee2,3, Seung Jo Yoo2, Seok-Hoon Lee2, and Jin-Gyu Kim2,*

1Gangneung Center, Korea Basic Science Institute, Gangneung 25457, Korea, 2Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 34133, Korea, 3School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 54896, Korea
Correspondence to: Kim JG, Tel: +82-42-865-3961, Fax: +82-42-865-3939, E-mail: jjintta@kbsi.re.kr
Received September 3, 2015; Revised September 10, 2015; Accepted September 10, 2015.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Due to the miniaturization of semiconductor devices, their crystal structure on the nanoscale must be analyzed. However, scanning electron microscope-electron backscatter diffraction (EBSD) has a limitation of resolution in nanoscale and high-resolution electron microscopy (HREM) can be used to analyze restrictive local structural information. In this study, three-dimensional (3D) automated crystal orientation and phase mapping using transmission electron microscopy (TEM) (3D TEM-EBSD) was used to identify the crystal structure relationship between an epitaxially grown CdS interfacial layer and a Cu(InxGax-1)Se2 (CIGS) solar cell layer. The 3D TEM-EBSD technique clearly defined the crystal orientation and phase of the epitaxially grown layers, making it useful for establishing the growth mechanism of functional nano-materials.

Keywords : Cu(InxGax-1)Se2, Crystal structure, Electron backscattering diffraction, Solar cell, Transmission electron microscopy
References
  1. Caro, LD, Giannini, C, Tapfer, L, Sch?nherr, HP, D?weritz, L, and Ploog, KG (1998). Validity of Vegard’s rule for the lattice parameter and the stiffness elastic constant ratios of the AlGaAs ternary compound. Solid State Commun. 108, 599-603.
    CrossRef
  2. Darakchieve, V, Beckers, M, Xie, MY, Hultman, L, Monemar, B, Carlin, JF, Feltin, E, Gonschorek, M, and Grandjean, N (2008). Effects of strain and composition on the lattice parameters and applicability of Vegard’s rule in Al rich Al1-xInxN films grown on sapphire. J Appl Phys. 103, 103513-103517.
    CrossRef
  3. Kaneshiro, J, Gaillard, N, Rocheleau, R, and Miller, E (2010). Advances in copper-chalcopyrite thin films for solar energy conversion. Sol Energy Mater Sol Cells. 94, 12-16.
    CrossRef
  4. Kaur, I, Pandya, DK, and Chopra, KL (1980). Growth kinetics and polymorphism of chemically deposited CdS films. J Electrochem Soc. 127, 943-948.
    CrossRef
  5. Kousuke, T, Mitsuru, O, Katsumasa, N, and Masaaki, F (2011). Preparation and characterization of Co/Pd epitaxial multilayer films with different orientations. Jpn J Appl Phys. 50, 073001-1-7.
  6. Lebedev, MV (2006). Interaction of the solvated hydrosulfide ions with GaAs surface at the semiconductor/electrolyte interfaces: chemical and electronic processes. Trends in Surface Science Research, Norris, CP, ed. New York: Nova Science Publishers, pp. 97-129.
  7. Lee, YH, Kim, KB, Kim, JG, Park, KB, Im, WB, and Kim, YI (2013). Crystallographic study of CIGS solar cell module via structural refinement. J Nanoelectron Optoelectron. 8, 575-578.
    CrossRef
  8. Moeck, P, Rouvimov, S, Rauch, EF, V?ron, M, Kirmse, H, H?usler, I, Neumann, W, Bultreys, D, Maniette, Y, and Nicolopoulos, S (2011). High spatial resolution semi-automatic crystallite orientation and phase mapping of nanocrystals in transmission electron microscopes. Cryst Res Technol. 46, 589-606.
    CrossRef
  9. Najanishi, T, and Ito, K (1994). Properties of chemical bath deposited CdS thin films. Sol Energy Mater Sol Cells. 35, 171-178.
    CrossRef
  10. Rauch, EF, Portillo, J, Nicolopoulos, S, Bultreys, D, Rouvimov, S, and Moeck, P (2010). Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z Kristallogr. 225, 103-109.
    CrossRef
  11. Vegard, L (1921). Die konstitution der mischkristalle und die raumf?llung der atome. Z Phys. 5, 17-26.
    CrossRef
  12. W?rz, R, Marron, DF, Meeder, A, Rumberg, A, Badu, SM, Schedel-Niedrig, T, Bloeck, U, Schubert-Bischoff, P, and Lux-Steiner, MCh (2003). Formation of an interfacial MoSe2 layer in CVD grown CuGaSe2 based thin film solar cells. Thin Solid Films. 431?432, 398-402.
    CrossRef
  13. Yoo, SJ, Kim, JG, Kim, CY, Kim, EM, Lee, JH, Kim, YM, Yoo, SJ, Kim, SB, and Kim, YJ (2012). Characterization of crystallographic properties of GaN thin film using automated crystal orientation mapping with TEM. Met Mater Int. 18, 997-1001.
    CrossRef
  14. Zelaya-Angel, O, Alvarado-Gil, JJ, Lozada-Morales, R, Vargas, H, and Ferreira da Silva, A (1994). Band-gap shift CdS semiconductor by photoacoustic spectroscopy: evidence of a cubic to hexagonal lattice transition. Appl Phys Lett. 64, 291-293.
    CrossRef


December 2018, 48 (4)
Full Text(PDF) Free

Social Network Service
Services

Cited By Articles
  • CrossRef (0)

Funding Information
  • Science Central
  • CrossMark
  • Crossref TDM