search for




 

A Brief Overview of Atom Probe Tomography Research
Applied Microscopy 2016;46:117-26
Published online September 30, 2016
© 2016 Korean Society of Microscopy.

Baptiste Gault

Department of Microstructure Physics and Alloy Design, Max-Planck-Institut f?r Eisenforschung GmbH, D?sseldorf 40237, Germany
Correspondence to: Gault B, Tel: +49-211-6792-908, Fax: +49-211-6792 333, E-mail: b.gault@mpie.de
Received September 30, 2016; Revised September 26, 2016; Accepted September 26, 2016.
Abstract

Atom probe tomography (APT) has been fast rising in prominence over the past decade as a key tool for nanoscale analytical characterization of a range of materials systems. APT provides three-dimensional mapping of the atom distribution in a small volume of solid material. The technique has evolved, with the incorporation of laser pulsing capabilities, and, combined with progress in specimen preparation, APT is now able to analyse a very range of materials, beyond metals and alloys that used to be its core applications. The present article aims to provide an overview of the technique, providing a brief historical perspective, discussing recent progress leading to the state-of-the-art, some perspectives on its evolution, with targeted examples of applications.

Keywords : Atom probe tomography, Field evaporation, Materials characterization, Microscopy, Nanoscale
References
  1. Araullo-Peters, VJ, Breen, A, Ceguerra, AV, Gault, B, Ringer, SP, and Cairney, JM (2015). A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy. 154, 7-14.
    Pubmed CrossRef
  2. Bas, P, Bostel, A, Deconihout, B, and Blavette, D (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci. 87, 298-304.
    CrossRef
  3. Beavan, LA, Scanlan, RM, and Seidman, DN (1971). The defect structure of depleted zones in irradiated tungsten. Acta Metall. 19, 1339-1350.
    CrossRef
  4. B?mont, E, Bostel, A, Bouet, M, Da Costa, G, Chambreland, S, Deconihout, B, and Hono, K (2003). Effects of incidence angles of ions on the mass resolution of an energy compensated 3D atom probe. Ultramicroscopy. 95, 231-238.
    Pubmed CrossRef
  5. Blavette, D, Bostel, A, Sarrau, JM, Deconihout, B, and Menand, A (1993). An atom probe for three-dimensional tomography. Nature. 363, 432-435.
    CrossRef
  6. Blum, I, Rigutti, L, Vurpillot, F, Vella, A, Gaillard, A, and Deconihout, B (2016). Dissociation dynamics of molecular ions in high DC electric field. J Phys Chem A. 120, 3654-3662.
    Pubmed CrossRef
  7. Boll, T, Al-Kassab, T, Yuan, Y, and Liu, ZG (2007). Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic. Ultramicroscopy. 107, 796-801.
    Pubmed CrossRef
  8. Breen, AJ, Moody, MP, Ceguerra, AV, Gault, B, Araullo-Peters, VJ, and Ringer, SP (2015). Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning. Ultramicroscopy. 159, 314-323.
    Pubmed CrossRef
  9. Breen, AJ, Xie, KY, Moody, MP, Gault, B, Yen, HW, Wong, CC, Cairney, JM, and Ringer, SP (2014). Resolving the morphology of niobium carbonitride nano-precipitates in steel using atom probe tomography. Microsc Microanal. 20, 1100-1110.
    Pubmed CrossRef
  10. Brenner, SS, and Goodman, SR (1971). FIM-atom probe analysis of thin nitride platelets in Fe-3 at.% Mo. Scripta Metall. 5, 865-869.
    CrossRef
  11. Bunton, J, Lenz, D, Olson, J, Thompson, K, Ulfig, R, Larson, D, and Kelly, T (2006). Instrumentation developments in atom probe tomography: applications in semiconductor research. Microsc Microanal. 12, 1730-1731.
    CrossRef
  12. Bunton, JH, Olson, JD, Lenz, DR, and Kelly, TF (2007). Advances in pulsed-laser atom probe: instrument and specimen design for optimum performance. Microsc Microanal. 13, 418-427.
    Pubmed CrossRef
  13. Cadel, E, Vurpillot, F, Lard?, R, Duguay, S, and Deconihout, B (2009). Depth resolution function of the laser assisted tomographic atom probe in the investigation of semiconductors. J Appl Phys. 106, 044908.
    CrossRef
  14. Cerezo, A, Clifton, PH, Gomberg, A, and Smith, GDW (2007a). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy. 107, 720-725.
    CrossRef
  15. Cerezo, A, Clifton, PH, Galtrey, MJ, Humphreys, CJ, Kelly, TF, Larson, DJ, Lozano-Perez, S, Marquis, EA, Oliver, RA, and Sha, G (2007b). Atom probe tomography today. Mater Today. 10, 36-42.
    CrossRef
  16. Cerezo, A, Godfrey, TJ, Sijbrandij, SJ, Smith, GDW, and Warren, PJ (1998). Performance of an energy-compensated three-dimensional atom probe. Rev Sci Instrum. 69, 49-58.
    CrossRef
  17. Cerezo, A, Godfrey, TJ, and Smith, GDW (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum. 59, 862-866.
    CrossRef
  18. Chen, YM, Ohkubo, T, and Hono, K (2011). Laser assisted field evaporation of oxides in atom probe analysis. Ultramicroscopy. 111, 562-566.
    Pubmed CrossRef
  19. Clifton, PH, Gribb, TT, Gerstl, SSA, Ulfig, RM, and Larson, DJ (2008). Performance advantages of a modern, ultra-high mass resolution atom probe. Microsc Microanal. 14, 454-455.
    CrossRef
  20. Da Costa, G, Vurpillot, F, Bostel, A, Bouet, M, and Deconihout, B (2005). Design of a delay-line position-sensitive detector with improved performance. Rev Sci Instrum. 76, 013304.
    CrossRef
  21. Dagan, M, Hanna, LR, Xu, A, Roberts, SG, Smith, GDW, Gault, B, Edmondson, PD, Bagot, PA, and Moody, MP (2015). Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. Ultramicroscopy. 159, 387-394.
    Pubmed CrossRef
  22. De Geuser, F, Dorin, T, Lefebvre, W, Gault, B, and Deschamps, A (2014). Complementarity of atom probe, small angle scattering and differential scanning calorimetry for the study of precipitation in aluminium alloys. Materials Science Forum, Marthinsen, K, Holmedal, B, and Li, Y, ed. Pfaffikon: Trans Tech Publications, pp. 926-932
    CrossRef
  23. De Geuser, F, Lefebvre, W, and Blavette, D (2006). 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy. Philos Mag Lett. 86, 227-234.
    CrossRef
  24. Deconihout, B, Vurpillot, F, Gault, B, Da Costa, G, Bouet, M, Bostel, A, Blavette, D, Hideur, A, Martel, G, and Brunel, M (2007). Toward a laser assisted wide-angle tomographic atom-probe. Surf Interface Anal. 39, 278-282.
    CrossRef
  25. Dempsey, NM, Woodcock, TG, Sepehri-Amin, H, Zhang, Y, Kennedy, H, Givord, D, Hono, K, and Gutfleisch, O (2013). High-coercivity Nd?Fe?B thick films without heavy rare earth additions. Acta Mater. 61, 4920-4927.
    CrossRef
  26. Faulkner, RG, and Ralph, B (1972). Field-ion microscopy of the early stages of γ′ precipitation in a nickel-aluminium alloy. Acta Metall. 20, 703-710.
    CrossRef
  27. Felfer, PJ, Alam, T, Ringer, SP, and Cairney, JM (2012). A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc Res Tech. 75, 484-491.
    CrossRef
  28. Forbes, RG (1995). Field evaporation theory: a review of basic ideas. Appl Surf Sci. 87, 1-11.
    CrossRef
  29. Gault, B, Chen, Y, Moody, M, Ohkubo, T, Hono, K, and Ringer, S (2011a). Influence of the wavelength on the spatial resolution of pulsed-laser atom probe. J Appl Phys. 110, 094901.
    CrossRef
  30. Gault, B, Cui, XY, Moody, MP, De Geuser, F, Sigli, C, Ringer, SP, and Deschamps, A (2012). Atom probe microscopy investigation of Mg site occupancy within δ′ precipitates in an Al?Mg?Li alloy. Scripta Mater. 66, 903-906.
    CrossRef
  31. Gault, B, Haley, D, De Geuser, F, Moody, M, Marquis, E, Larson, D, and Geiser, B (2011b). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy. 111, 448-457.
    CrossRef
  32. Gault, B, La Fontaine, A, Moody, MP, Ringer, SP, and Marquis, EA (2010a). Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy. 110, 1215-1222.
    CrossRef
  33. Gault, B, Moody, MP, De Geuser, F, Haley, D, Stephenson, LT, and Ringer, SP (2009a). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett. 95, 034103.
    CrossRef
  34. Gault, B, Moody, MP, De Geuser, F, La Fontaine, A, Stephenson, LT, Haley, D, and Ringer, SP (2010b). Spatial resolution in atom probe tomography. Microsc Microanal. 16, 99-110.
    CrossRef
  35. Gault, B, Moody, MP, de Geuser, F, Tsafnat, G, La Fontaine, A, Stephenson, LT, Haley, D, and Ringer, SP (2009b). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys. 105, 034913.
    CrossRef
  36. Gault, B, M?ller, M, La Fontaine, A, Moody, M, Shariq, A, Cerezo, A, Ringer, S, and Smith, G (2010c). Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J Appl Phys. 108, 044904.
    CrossRef
  37. Gault, B, Saxey, DW, Ashton, MW, Sinnott, SB, Chiaramonti, AN, Moody, MP, and Schreiber, DK (2016). Behavior of molecules and molecular ions near a field emitterThis work is a partial contribution of the US Government and therefore is not subject to copyright in the United States. New J Phys. 18, 033031.
    CrossRef
  38. Gault, B, Scenini, F, Moody, MP, Huang, JH, Botton, GA, Mangelinck, D, Descoins, M, and Newman, RC (2013). Atom Probe Characterization of Corroded Alloy 600. Microsc Microanal. 19, 1020-1021.
  39. Gault, B, Vella, A, Vurpillot, F, Menand, A, Blavette, D, and Deconihout, B (2007). Optical and thermal processes involved in ultrafast laser pulse interaction with a field emitter. Ultramicroscopy. 107, 713-719.
    Pubmed CrossRef
  40. Gault, B, Vurpillot, F, Bostel, A, Menand, A, and Deconihout, B (2005). Estimation of the tip field enhancement on a field emitter under laser illumination. Appl Phys Lett. 86, 094101.
    CrossRef
  41. Gault, B, Vurpillot, F, Vella, A, Gilbert, M, Menand, A, Blavette, D, and Deconihout, B (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum. 77, 043705.
    CrossRef
  42. Geiser, BP, Kelly, TF, Larson, DJ, Schneir, J, and Roberts, JP (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal. 13, 437-447.
    Pubmed CrossRef
  43. Gilbert, M, Vurpillot, F, Vella, A, Bernas, H, and Deconihout, B (2007). Some aspects of the silicon behaviour under femtosecond pulsed laser field evaporation. Ultramicroscopy. 107, 767-772.
    Pubmed CrossRef
  44. Gordon, LM, and Joester, D (2011). Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature. 469, 194-197.
    Pubmed CrossRef
  45. Haley, D, Petersen, T, Barton, G, and Ringer, S (2009). Influence of field evaporation on radial distribution functions in atom probe tomography. Philos Mag. 89, 925-943.
    CrossRef
  46. Hellman, OC, Vandenbroucke, JA, Rusing, J, Isheim, D, and Seidman, DN (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal. 6, 437-444.
    Pubmed
  47. Herbig, M, Choi, P, and Raabe, D (2015). Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy. 153, 32-39.
    Pubmed CrossRef
  48. Hono, K, Ohkubo, T, Chen, Y, Kodzuka, M, Oh-Ishi, K, Sepehri-Amin, H, Li, F, Kinno, T, Tomiya, S, and Kanitani, Y (2011). Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy. 111, 576-583.
    CrossRef
  49. Jagutzki, O, Cerezo, A, Czasch, A, Dorner, R, Hattas, M, Huang, M, Mergel, V, Spillmann, U, Ullmann-Pfleger, K, and Weber, T (2002). Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans Nucl Sci. 49, 2477-2483.
    CrossRef
  50. Karahka, M, Xia, Y, and Kreuzer, HJ (2015). The mystery of missing species in atom probe tomography of composite materials. Appl Phys Lett. 107, 062105.
    CrossRef
  51. Karlsson, J, Sundell, G, Thuvander, M, and Andersson, M (2014). Atomically resolved tissue integration. Nano Lett. 14, 4220-4223.
    Pubmed CrossRef
  52. Kellogg, GL (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys. 52, 5320-5328.
    CrossRef
  53. Kellogg, GL (1982). Measurement of the charge state distribution of field evaporated ions: evidence for post-ionization. Surf Sci. 120, 319-333.
    CrossRef
  54. Kellogg, GL, and Tsong, TT (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys. 51, 1184-1193.
    CrossRef
  55. Kelly, TF, Gribb, TT, Olson, JD, Martens, RL, Shepard, JD, Wiener, SA, Kunicki, TC, Ulfig, RM, Lenz, DR, and Strennen, EM (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal. 10, 373-383.
    Pubmed CrossRef
  56. Kelly, TF, Larson, DJ, Thompson, K, Alvis, RL, Bunton, JH, Olson, JD, and Gorman, BP (2007). Atom probe tomography of electronic materials. Annu Rev Mater Res. 37, 681-727.
    CrossRef
  57. Kelly, TF, Vella, A, Bunton, JH, Houard, J, Silaeva, EP, Bogdanowicz, J, and Vandervorst, W (2014). Laser pulsing of field evaporation in atom probe tomography. Curr Opin Solid State Mater Sci. 18, 81-89.
    CrossRef
  58. Kelly, TF, Voelkl, E, and Geiser, BP (2009). Practical determination of spatial resolution in atom probe tomography. Microsc Microanal. 15, 12.
    CrossRef
  59. Kim, JH, Kim, BK, Kim, DI, Choi, PP, Raabe, D, and Yi, KW (2015). The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700°C for advanced thermal power plant applications. Corros Sci. 96, 52-66.
    CrossRef
  60. Kingham, DR (1982). The post-ionization of field evaporated ions: a theoretical explanation of multiple charge states. Surf Sci. 116, 273-301.
    CrossRef
  61. Krug, ME, Mao, Z, Seidman, DN, and Dunand, DC (2014). Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al?Li?Sc alloys. Acta Mater. 79, 382-395.
    CrossRef
  62. Kuzmina, M, Herbig, M, Ponge, D, Sandl?bes, S, and Raabe, D (2015). Linear complexions: confined chemical and structural states at dislocations. Science. 349, 1080-1083.
    Pubmed CrossRef
  63. La Fontaine, A, Yen, H-W, Felfer, PJ, Ringer, SP, and Cairney, JM (2015). Atom probe study of chromium oxide spinels formed during intergranular corrosion. Scripta Mater. 99, 1-4.
    CrossRef
  64. La Fontaine, A, Zavgorodniy, A, Liu, H, Zheng, R, Swain, M, and Cairney, J (2016). Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci Adv. 2, e1601145.
    Pubmed KoreaMed CrossRef
  65. Larson, DJ, Foord, DT, Petford-Long, AK, Anthony, TC, Rozdilsky, IM, Cerezo, A, and Smith, GWD (1998). Focused ion-beam milling for field-ion specimen preparation:: preliminary investigations. Ultramicroscopy. 75, 147-159.
    CrossRef
  66. Larson, DJ, Lawrence, D, Lefebvre, W, Olson, D, Prosa, TJ, Reinhard, DA, Ulfig, RM, Clifton, PH, Bunton, JH, and Lenz, D (2011a). Toward atom probe tomography of microelectronic devices. J Phys: Conf Ser Vol. 326, 012030.
  67. Larson, DJ, Lawrence, D, Olson, D, Prosa, TJ, Ulfig, RM, Reinhard, DA, Clifton, PH, Kelly, TF, and Lefebvre, W (2011b). From the store shelf to device-level atom probe analysis: an exercise in feasibility. 37th International Symposium for Testing and Failure Analysis. San Jose: ISTFA 2011, pp. 189-197
  68. Larson, DJ, Cerezo, A, Juraszek, J, Hono, K, and Schmitz, G (2009). Atom-probe tomographic studies of thin films and multilayers. MRS Bull. 34, 732-737.
    CrossRef
  69. Larson, DJ, Gault, B, Geiser, BP, De Geuser, F, and Vurpillot, F (2013). Atom probe tomography spatial reconstruction: status and directions. Curr Opin Solid State Mater Sci. 17, 236-247.
    CrossRef
  70. Mao, ZG, Sudbrack, CK, Yoon, KE, Martin, G, and Seidman, DN (2007). The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nat Mater. 6, 210-216.
    Pubmed CrossRef
  71. Marceau, RKW, Stephenson, LT, Hutchinson, CR, and Ringer, SP (2011). Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales. Ultramicroscopy. 111, 738-742.
    Pubmed CrossRef
  72. Marceau, RKW, Gutierrez-Urrutia, I, Herbig, M, Moore, KL, Lozano-Perez, S, and Raabe, D (2013). Multi-scale correlative microscopy investigation of both structure and chemistry of deformation twin bundles in Fe? Mn?C steel. Microsc Microanal. 19, 1581-1585.
    Pubmed CrossRef
  73. Marquis, EA (2002). Microstructural evolution and strengthening mechanisms in Al-Sc and Al-Mg-Sc alloys. PhD dissertation. Evanston: Northwestern University
  74. Marquis, EA, Bachhav, M, Chen, Y, Dong, Y, Gordon, LM, and McFarland, A (2013). On the current role of atom probe tomography in materials characterization and materials science. Curr Opin Solid State Mater Sci. 17, 217-223.
    CrossRef
  75. Marquis, EA, and Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R Reports. 69, 37-62.
    CrossRef
  76. Marquis, EA, Hyde, JM, Saxey, DW, Lozano-Perez, S, de Castro, V, Hudson, D, Williams, CA, Humphry-Baker, S, and Smith, GD (2009a). Nuclear reactor materials at the atomic scale. Mater Today. 12, 30-37.
    CrossRef
  77. Marquis, EA, Miller, MK, Blavette, D, Ringer, SP, Sudbrack, CK, and Smith, GD (2009b). Structural materials: understanding atomic-scale microstructures. MRS Bull. 34, 725-731.
    CrossRef
  78. Mazumder, B, Vella, A, and D?conihout, B (2011). Evaporation mechanisms of MgO in laser assisted atom probe tomography. Ultramicroscopy. 111, 571-575.
    CrossRef
  79. Meisnar, M, Moody, M, and Lozano-Perez, S (2015). Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels. Corros Sci. 98, 661-671.
    CrossRef
  80. Melmed, AJ, Sakurai, T, Kuk, Y, and Givargizov, EI (1981). Feasibility of ToF atom-probe analysis of silicon. Surf Sci. 103, L139-L142.
    CrossRef
  81. Melmed, AJ (1991). The art and science and other aspects of making sharp tips. J Vac Sci. 9, 601-608.
    CrossRef
  82. Miller, MK (2000). The development of atom probe field-ion microscopy. Mater Charact. 44, 11-27.
    CrossRef
  83. Miller, MK, and Russell, KF (2006). Atom probe specimen preparation with a dual beam FIB Miller. 2006 19th International Vacuum Nanoelectronics Conference: IEEE, pp. 147-148
    CrossRef
  84. Moody, MP, Ceguerra, AV, Breen, AJ, Cui, XY, Gault, B, Stephenson, LT, Marceau, RK, Powles, RC, and Ringer, SP (2014). Atomically resolved tomography to directly inform simulations for structure?property relationships. Nat Commun. 5.
    CrossRef
  85. Moody, MP, Gault, B, Stephenson, LT, Haley, D, and Ringer, SP (2009). Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy. 109, 815-824.
    Pubmed CrossRef
  86. Moody, MP, Gault, B, Stephenson, LT, Marceau, RK, Powles, RC, Ceguerra, AV, Breen, AJ, and Ringer, SP (2011). Lattice rectification in atom probe tomography: toward true three-dimensional atomic microscopy. Microsc Microanal. 17, 226-239.
    Pubmed CrossRef
  87. Moody, MP, Stephenson, LT, Ceguerra, AV, and Ringer, SP (2008). Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc Res Tech. 71, 542-550.
    Pubmed CrossRef
  88. Moody, MP, Stephenson, LT, Liddicoat, PV, and Ringer, SP (2007). Contingency table techniques for three dimensional atom probe tomography. Microsc Res Tech. 70, 258-268.
    Pubmed CrossRef
  89. M?ller, EW (1956). Resolution of the atomic structure of a metal surface by the field ion microscope. J Appl Phys. 27, 474-476.
    CrossRef
  90. M?ller, EW, and Bahadur, K (1956). Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys Rev. 102, 624.
    CrossRef
  91. M?ller, EW, Panitz, JA, and McLane, SB (1968). The atom-probe field ion microscope. Rev Sci Instrum. 39, 83-86.
    CrossRef
  92. M?ller, M, Gault, B, Smith, GDW, and Grovenor, CRM (2011a). Accuracy of pulsed laser atom probe tomography for compound semiconductor analysis. J Phys: Conf Ser. 326, 012031.
  93. M?ller, M, Saxey, DW, Smith, GDW, and Gault, B (2011b). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy. 111, 487-492.
    CrossRef
  94. Nakamura, S, and Kuroda, T (1978). Atom-probe fim studies of β-SiC whiskers. Surf Sci. 70, 452-458.
    CrossRef
  95. Nishikawa, O, Ohtani, Y, Maeda, K, Watanabe, M, and Tanaka, K (2000). Development of the scanning atom probe and atomic level analysis. Mater Charact. 44, 29-57.
    CrossRef
  96. Peterman, EM, Reddy, SM, Saxey, DW, Snoeyenbos, DR, Rickard, WD, Fougerouse, D, and Kylander-Clark, AR (2016). Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops. Sci Adv. 2, e1601318.
  97. Rigutti, L, Vella, A, Vurpillot, F, Gaillard, A, Sevelin-Radiguet, N, Houard, J, Hideur, A, Martel, G, Jacopin, G, and Bugallo, ADL (2013). Coupling atom probe tomography and photoluminescence spectroscopy: exploratory results and perspectives. Ultramicroscopy. 132, 75-80.
    Pubmed KoreaMed CrossRef
  98. Rolland, N, Larson, DJ, Geiser, BP, Duguay, S, Vurpillot, F, and Blavette, D (2015). An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials. Ultramicroscopy. 159, 195-201.
    Pubmed CrossRef
  99. Schreiber, DK, Olszta, MJ, Saxey, DW, Kruska, K, Moore, K, Lozano-Perez, S, and Bruemmer, SM (2013). Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water. Microsc Microanal. 19, 676-687.
    Pubmed CrossRef
  100. Sebastian, JT, Hellman, OC, and Seidman, DN (2001). New method for the calibration of three-dimensional atom-probe mass spectra. Rev Sci Instrum. 72, 2984-2988.
    Pubmed CrossRef
  101. Seidman, DN (2007). Three-dimensional atom-probe tomography: advances and applications. Annu Rev Mater Res. 37, 127-158.
    CrossRef
  102. Sha, G, Yao, L, Liao, X, Ringer, SP, Duan, ZC, and Langdon, TG (2011). Segregation of solute elements at grain boundaries in an ultrafine grained Al?Zn?Mg?Cu alloy. Ultramicroscopy. 111, 500-505.
    CrossRef
  103. Shariq, A, Al-Kassab, T, Kirchheim, R, Safarik, DJ, and Schwarz, RB (2006). Exploring the next neighbourhood relationship in metallic glasses utilizing the atom probe tomography. 2006 19th International Vacuum Nanoelectronics Conference: IEEE, pp. 19-20
    CrossRef
  104. Silaeva, EP, Arnoldi, L, Karahka, ML, Deconihout, B, Menand, A, Kreuzer, HJ, and Vella, A (2014). Do dielectric nanostructures turn metallic in high-electric dc fields?. Nano Lett. 14, 6066-6072.
    CrossRef
  105. Silaeva, EP, Karahka, M, and Kreuzer, HJ (2013). Atom probe tomography and field evaporation of insulators and semiconductors: theoretical issues. Curr Opin Solid State Mater Sci. 17, 211-216.
    Pubmed CrossRef
  106. Stephenson, LT, Moody, MP, Gault, B, and Ringer, SP (2013). Nearest neighbour diagnostic statistics on the accuracy of APT solute cluster characterisation. Philos Mag. 93, 975-989.
    CrossRef
  107. Stephenson, LT, Moody, MP, Liddicoat, PV, and Ringer, SP (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal. 13, 448-463.
    CrossRef
  108. Stoian, R, Ashkenasi, D, Rosenfeld, A, and Campbell, EEB (2000). Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Phys Rev B. 62, 13167.
    Pubmed CrossRef
  109. Suram, SK, and Rajan, K (2013). Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation. Ultramicroscopy. 132, 136-142.
    CrossRef
  110. Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF, and Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy. 107, 131-139.
    Pubmed CrossRef
  111. Tsong, TT, and Kinkus, TJ (1984). Energy distributions of pulsed-laser field-desorbed gaseous ions and field-evaporated metal ions: a direct time-of-flight measurement. Phys Rev B. 29, 529.
    CrossRef
  112. Tsong, TT, McLane, SB, and Kinkus, TJ (1982). Pulsed-laser time-of-flight atom-probe field ion microscope. Rev Sci Instrum. 53, 1442-1448.
    CrossRef
  113. Uman, E, Colonna-Dashwood, M, Colonna-Dashwood, L, Perger, M, Klatt, C, Leighton, S, Miller, B, Butler, KT, Melot, BC, Speirs, RW, and Hendon, CH (2016). The effect of bean origin and temperature on grinding roasted coffee. Sci Rep. 6, 24483.
    CrossRef
  114. Valley, JW, Cavosie, AJ, Ushikubo, T, Reinhard, DA, Lawrence, DF, Larson, DJ, Clifton, PH, Kelly, TF, Wilde, SA, and Moser, DE (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci. 7, 219-223.
    Pubmed KoreaMed CrossRef
  115. Vella, A, Deconihout, B, Marrucci, L, and Santamato, E (2007). Femtosecond field ion emission by surface optical rectification. Phys Rev Lett. 99, 046103.
    CrossRef
  116. Vella, A, Vurpillot, F, Gault, B, Menand, A, and Deconihout, B (2006). Evidence of field evaporation assisted by nonlinear optical rectification induced by ultrafast laser. Phys Rev B. 73, 165416.
    Pubmed CrossRef
  117. Vurpillot, F, Da Costa, G, Menand, A, and Blavette, D (2001). Structural analyses in three-dimensional atom probe: a Fourier transform approach. J Microsc. 203, 295-302.
    CrossRef
  118. Vurpillot, F, De Geuser, F, Da Costa, G, and Blavette, D (2004). Application of Fourier transform and autocorrelation to cluster identification in the three-dimensional atom probe. J Microsc. 216, 234-240.
    Pubmed CrossRef
  119. Vurpillot, F, Gault, B, Geiser, BP, and Larson, DJ (2013). Reconstructing atom probe data: a review. Ultramicroscopy. 132, 19-30.
    Pubmed CrossRef
  120. Vurpillot, F, Houard, J, Vella, A, and Deconihout, B (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D-Applied Phys. 42, 125502.
    Pubmed CrossRef
  121. Walls, JM, Southworth, HN, and Rushton, GJ (1974). The preparation of field electron/field-ion emitters by ion etching. Vacuum. 24, 475-479.
    CrossRef
  122. Waugh, AR, Payne, S, Worrall, GM, and Smith, GDW (1984). In situ ion milling of field ion specimens using a liquid metal ion source. J Phys Colloq. 45, C9-207-C9-209.
    CrossRef
  123. Wilde, J, Cerezo, A, and Smith, GDW (2000). Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron. Scripta Mater. 43, 39-48.
    CrossRef
  124. Yao, L, Moody, MP, Cairney, JM, Haley, D, Ceguerra, AV, Zhu, C, and Ringer, SP (2011). Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. Ultramicroscopy. 111, 458-463.
    CrossRef