search for


Structural Analysis of Exosomes Using Different Types of Electron Microscopy
Applied Microscopy 2017;47:171-5
Published online September 30, 2017
© 2017 Korean Society of Microscopy.

Hyosun Choi1, and Ji Young Mun1,2,*

1BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon 34824, Korea, 2Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Korea
Correspondence to: Mun JY, Tel: +82-31-740-7380, Fax: +82-31-740-7354, E-mail:
Received June 12, 2017; Revised July 24, 2017; Accepted July 24, 2017.
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Negative staining has been traditionally used for exosome imaging; however, the technique is limited to surface topology only and can cause staining artifacts. Therefore, to analyze the internal structure of exosomes, we employed a method of block preparation, thin sectioning, and electron tomography. In addition, an automatic serial sectioning technique with 15-nm thickness through focused ion beam was employed to observe the three-dimensional structure of exosomes of various sizes. Cryo-transmission electron microscopy revealed the near-to-native structure of exosomes.

Keywords : Exosome, Electron tomography, Serial block face section through focused ion beam, Cryo-transmission electron microscopy
  1. Choi, H, Jung, MK, and Mun, JY (2017). Current status of automatic serial sections for 3D electron microscopy. Appl Microsc. 47, 3-7.
  2. Enderle, D, Spiel, A, Coticchia, CM, Berghoff, E, Mueller, R, Schlumpberger, M, Sprenger-Haussels, M, Shaffer, JM, Lader, E, Skog, J, and Noerholm, M (2015). Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One. 10, e0136133.
    Pubmed KoreaMed CrossRef
  3. Gyorgy, B, Szabo, TG, Pasztoi, M, Pal, Z, Misjak, P, Aradi, B, Laszlo, V, Pallinger, E, Pap, E, Kittel, A, Nagy, G, Falus, A, and Buzás, EI (2011). Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 68, 2667-2688.
    Pubmed KoreaMed CrossRef
  4. Jimenez, N, Humbel, BM, van Donselaar, E, Verkleij, AJ, and Burger, KN (2006). Aclar discs: a versatile substrate for routine high-pressure freezing of mammalian cell monolayers. J Microsc. 221, 216-223.
    Pubmed CrossRef
  5. Kim, SB, Kim, HR, Park, MC, Cho, S, Goughnour, PC, Han, D, Yoon, I, Kim, Y, Kang, T, Song, E, Kim, P, Choi, H, Mun, JY, Song, C, Lee, S, Jung, HS, and Kim, S (2017). Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. J Cell Biol. 216, 2201-2216.
    Pubmed KoreaMed CrossRef
  6. Liu, X, and Wang, HW (2011). Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method. J Vis Exp.
  7. Montaner-Tarbes, S, Borras, FE, Montoya, M, Fraile, L, and Del Portillo, HA (2016). Serum-derived exosomes from non-viremic animals previously exposed to the porcine respiratory and reproductive virus contain antigenic viral proteins. Vet Res. 47, 59.
    Pubmed KoreaMed CrossRef
  8. Raposo, G, and Stoorvogel, W (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 200, 373-383.
    Pubmed KoreaMed CrossRef
  9. Saari, H, Lazaro-Ibanez, E, Viitala, T, Vuorimaa-Laukkanen, E, Siljander, P, and Yliperttula, M (2015). Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 220, 727-737.
    Pubmed CrossRef
  10. Sharma, S, Rasool, HI, Palanisamy, V, Mathisen, C, Schmidt, M, Wong, DT, and Gimzewski, JK (2010). Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 4, 1921-1926.
    Pubmed KoreaMed CrossRef
  11. Thery, C (2011). Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 3, 15.
    Pubmed KoreaMed CrossRef
  12. Thery, C, Ostrowski, M, and Segura, E (2009). Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 9, 581-593.
    Pubmed CrossRef
  13. Titze, B, and Genoud, C (2016). Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell. 108, 307-323.
    Pubmed CrossRef
  14. Villarroya-Beltri, C, Baixauli, F, Gutierrez-Vazquez, C, Sanchez-Madrid, F, and Mittelbrunn, M (2014). Sorting it out: regulation of exosome loading. Semin Cancer Biol. 28, 3-13.
    Pubmed KoreaMed CrossRef
  15. Vlassov, AV, Magdaleno, S, Setterquist, R, and Conrad, R (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 1820, 940-948.
    Pubmed CrossRef
  16. Zaborowski, MP, Balaj, L, Breakefield, XO, and Lai, CP (2015). Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience. 65, 783-797.

December 2018, 48 (4)
Full Text(PDF) Free

Social Network Service

Cited By Articles
  • CrossRef (0)

Funding Information
  • Science Central
  • CrossMark
  • Crossref TDM