search for




 

Visualization of Extracellular Vesicles of Prokaryotes and Eukaryotic Microbes
Applied Microscopy 2018;48:96-101
Published online December 30, 2018
© 2018 Korean Society of Microscopy.

Ki Woo Kim1,2*

1School of Ecology and Environmental System, Kyungpook National University, Sangju 37224, Korea
2Tree Diagnostic Center, Kyungpook National University, Sangju 37224, Korea
Correspondence to: *Kim KW, http://orcid.org/0000-0002-7010-0336, Tel: +82-54-530-1246 Fax: +82-54-530-1248 E-mail: kiwoo@knu.ac.kr
Received December 19, 2018; Revised December 27, 2018; Accepted December 27, 2018.
his is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The release of nanoscale membrane-bound vesicles is common in all three domains of life. These vesicles are involved in a variety of biological processes such as cell-to-cell communication, horizontal gene transfer, and substrate transport. Prokaryotes including bacteria and archaea release membrane vesicles (MVs) (20 to 400 nm in diameter) into their extracellular milieu. In spite of structural differences in cell envelope, both Gram-positive and negative bacteria produce MVs that contain the cell membrane of each bacterial species. Archaeal MVs characteristically show surface-layer encircling the vesicles. Filamentous fungi and yeasts as eukaryotic microbes produce bilayered exosomes that have varying electron density. Microbes also form intracellular vesicles and minicells that are similar to MVs and exosomes in shape. Electron and fluorescence microscopy could reveal the presence of DNA in MVs and exosomes. Given the biogenesis of extracellular vesicles from the donor cell, in situ high-resolution microscopy can provide insights on the structural mechanisms underlying the formation and release of microbial extracellular vesicles.
Keywords : Archaea, Bacteria, Fungi, Membrane vesicle


December 2018, 48 (4)
  • Science Central
  • CrossMark
  • Crossref TDM