Dunnett, SB (1995). Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behav Brain Res. 66, 133-142.
Federmeier, KD, Kleim, JA, and Greenough, WT (2002). Learning-induced multiple synapse formation in rat cerebellar cortex. Neurosci Lett. 332, 180-184.
Fujii, R, Ichikawa, M, and Ozaki, M (2008). Imaging of molecular dynamics regulated by electrical activities in neural circuits and in synapses. Neurosignals. 16, 260-277.
Greenough, WT, Larson, JR, and Withers, GS (1985). Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behav Neural Biol. 44, 301-314.
Gundersen, HJ, Bagger, P, Bendtsen, TF, Evans, SM, Korbo, L, Marcussen, N, Moller, A, Nielsen, K, Nyengaard, JR, and Pakkenberg, B (1988). The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS. 96, 857-881.
Jones, TA (1999). Multiple synapse formation in the motor cortex opposite unilateral sensorimotor cortex lesions in adult rats. J Comp Neurol. 414, 57-66.
Jones, TA, Chu, CJ, Grande, LA, and Gregory, AD (1999). Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci. 19, 10153-10163.
Jones, TA, Kleim, JA, and Greenough, WT (1996). Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res. 733, 142-148.
Kim, HW, Oh, S, Lee, SH, Lee, S, Na, JE, Lee, KJ, and Rhyu, IJ (2018). Different types of multiple-synapse boutons in the cerebellar cortex between physically enriched and ataxic mutant mice. Microscopy research and technique.
Kleim, JA, Barbay, S, Cooper, NR, Hogg, TM, Reidel, CN, Remple, MS, and Nudo, RJ (2002). Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn Mem. 77, 63-77.
Kleim, JA, Barbay, S, and Nudo, RJ (1998). Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 80, 3321-3325.
Lee, KJ, Jung, JG, Arii, T, Imoto, K, and Rhyu, IJ (2007). Morphological changes in dendritic spines of Purkinje cells associated with motor learning. Neurobiol Learn Mem. 88, 445-450.
Lee, KJ, Park, IS, Kim, H, Greenough, WT, Pak, DT, and Rhyu, IJ (2013). Motor skill training induces coordinated strengthening and weakening between neighboring synapses. J Neurosci. 33, 9794-9799.
Medvedev, NI, Dallerac, G, Popov, VI, Rodriguez Arellano, JJ, Davies, HA, Kraev, IV, Doyere, V, and Stewart, MG (2012). Multiple spine boutons are formed after long-lasting LTP in the awake rat. Brain Struct Funct.
Neves, G, Cooke, SF, and Bliss, TV (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci. 9, 65-75.
Seung, HS (2011). Neuroscience: Towards functional connectomics. Nature. 471, 170-172.
Telgkamp, P, Padgett, DE, Ledoux, VA, Woolley, CS, and Raman, IM (2004). Maintenance of high-frequency transmission at purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites. Neuron. 41, 113-126.
Toni, N, Buchs, PA, Nikonenko, I, Bron, CR, and Muller, D (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature. 402, 421-425.
Wanaverbecq, N, Bodor, AL, Bokor, H, Slezia, A, Luthi, A, and Acsady, L (2008). Contrasting the functional properties of GABAergic axon terminals with single and multiple synapses in the thalamus. J Neurosci. 28, 11848-11861.