search for




 

Immunohistochemical Localization of Anoctamin 1 in the Mouse Cerebellum
Applied Microscopy 2018;48:110-6
Published online December 28, 2018
© 2018 Korean Society of Microscopy.

Yong Soo Park1,2, Ji Hyun Jeon1, Seung Hee Lee1,2, Sun Sook Paik1,2, and In-Beom Kim1,2,3,*

1Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea, 2Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea, 3Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
Correspondence to: Kim IB, http://orcid.org/0000-0002-1932-8407, Tel: +82-2-2258-7263, Fax: +82-2-536-3110, E-mail: ibkimmd@catholic.ac.kr
Received December 3, 2018; Revised December 19, 2018; Accepted December 19, 2018.
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Since a transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), was identified as a bona fide calcium (Ca2+)-activated chloride (Cl) channel (CaCC), there have been many reports on its expression and function. However, limited information on ANO1 expression and function in the brain is still available. In this study, we tried to reexamine expression patterns of ANO1 in the mouse cerebellum and further characterize ANO1-expressing components by immunohistochemical analyses. Strong ANO1 immunoreactivity was observed as large puncta in the granule cell layer and weak to moderate immunoreactivities were observed as small puncta in the molecular and Purkinje cell layers. Double-label experiments revealed that ANO1 did not colocalize with cerebellar neuronal population markers, such as anti-calbindin and anti-NeuN, while it colocalized or intermingled with a presynaptic marker, anti-synaptophysin. These results demonstrate that ANO1 is mainly localized at presynaptic terminals in the cerebellum and involved in synaptic transmission and modulation in cerebellar information processing.

Keywords : Anoctamin 1, Calcium-activated chloride channel, Immunohistochemistry, Cerebellum
References
  1. Apps, R, and Garwicz, M (2005). Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 6, 297-311.
    Pubmed CrossRef
  2. Barmack, NH, and Yakhnitsa, V (2011). Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum. Neuroscientist. 17, 221-236.
    Pubmed KoreaMed CrossRef
  3. Billig, GM, Pál, B, Fidzinski, P, and Jentsch, TJ (2011). Ca2+-activated Cl currents are dispensable for olfaction. Nat Neurosci. 14, 763-769.
    Pubmed CrossRef
  4. Bloedel, JR, and Bracha, V (2009). Cerebellar functions. Encyclopedic Reference of Neuroscience, Binder, MD, Hirokawa, N, and Windhorst, U, ed. Heidelberg: Springer-Verlag, pp. 667-671
    CrossRef
  5. Borst, JG, and Sakmann, B (1995). Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol. 489, 825-840.
    Pubmed KoreaMed CrossRef
  6. Buchholz, B, Faria, D, Schley, G, Schreiber, R, Eckardt, KU, and Kunzelmann, K (2014). Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst-forming epithelial cells. Kidney Int. 85, 1058-1067.
    CrossRef
  7. Bulley, S, Neeb, ZP, Burris, SK, Bannister, JP, Thomas-Gatewood, CM, Jangsangthong, W, and Jaggar, JH (2012). TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ Res. 111, 1027-1036.
    Pubmed KoreaMed CrossRef
  8. Caputo, A, Caci, E, Ferrera, L, Pedemonte, N, Barsanti, C, Sondo, E, Pfeffer, U, Ravazzolo, R, Zegarra-Moran, O, and Galietta, LJ (2008). TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 322, 590-594.
    Pubmed CrossRef
  9. Catalan, MA, Kondo, Y, Pena-Munzenmayer, G, Jaramillo, Y, Liu, F, Choi, S, Crandall, E, Borok, Z, Flodby, P, Shull, GE, and Melvin, JE (2015). A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc Natl Acad Sci U S A. 112, 2263-2268.
    Pubmed KoreaMed CrossRef
  10. Cherkashin, AP, Kolesnikova, AS, Tarasov, MV, Romanov, RA, Rogachevskaja, OA, Bystrova, MF, and Kolesnikov, SS (2016). Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells. Pflugers Arch. 468, 305-319.
    CrossRef
  11. Cho, H, and Oh, U (2013). Anoctamin 1 mediates thermal pain as a heat sensor. Curr Neuropharmacol. 11, 641-651.
    KoreaMed CrossRef
  12. Cho, H, Yang, YD, Lee, J, Lee, B, Kim, T, Jang, Y, Back, SK, Na, HS, Harfe, BD, Wang, F, Raouf, R, Wood, JN, and Oh, U (2012). The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci. 15, 1015-1021.
    Pubmed CrossRef
  13. Cho, SJ, Jeon, JH, Chun, DI, Yeo, SW, and Kim, IB (2014). Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 357, 563-569.
    Pubmed CrossRef
  14. Dauner, K, Möbus, C, Frings, S, and Möhrlen, F (2013). Targeted expression of anoctamin calcium-activated chloride channels in rod photoreceptor terminals of the rodent retina. Invest Ophthalmol Vis Sci. 54, 3126-3136.
    Pubmed CrossRef
  15. Davis, AJ, Shi, J, Pritchard, HA, Chadha, PS, Leblanc, N, Vasilikostas, G, Yao, Z, Verkman, AS, Albert, AP, and Greenwood, IA (2012). Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh)-A01. Br J Pharmacol. 168, 773-784.
    CrossRef
  16. Delvendahl, I, and Hallermann, S (2016). The cerebellar mossy fiber synapse as a model for high-frequency transmission in the mammalian CNS. Trends Neurosci. 39, 722-737.
    Pubmed CrossRef
  17. Eggermont, J (2004). Calcium-activated chloride channels: (un)known, (un) loved?. Proc Am Thorac Soc. 1, 22-27.
    CrossRef
  18. Faria, D, Rock, JR, Romao, AM, Schweda, F, Bandulik, S, Witzgall, R, Schlatter, E, Heitzmann, D, Pavenstadt, H, Herrmann, E, Kunzelmann, K, and Schreiber, R (2014). The calcium-activated chloride channel anoctamin 1 contributes to the regulation of renal function. Kidney Int. 85, 1369-1381.
    Pubmed CrossRef
  19. Frings, S, Reuter, D, and Kleene, SJ (2000). Neuronal Ca2+-activated Cl channels: homing in on an elusive channel species. Prog Neurobiol. 60, 247-289.
    Pubmed CrossRef
  20. Forsythe, ID, and Barnes-Davies, M (1993). The binaural auditory pathway: membrane currents limiting multiple action potential generation in the rat medial nucleus of the trapezoid body. Proc Biol Sci. 251, 143-150.
    Pubmed CrossRef
  21. Ha, GE, Lee, J, Kwak, H, Song, K, Kwon, J, Jung, SY, Hong, J, Chang, GE, Hwang, EM, Shin, HS, Lee, CJ, and Cheong, E (2016). The Ca2+-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat Commun. 7, 13791.
    CrossRef
  22. Hartzell, C, Putzier, I, and Arreola, J (2005). Calcium-activated chloride channels. Annu Rev Physiol. 67, 719-758.
    Pubmed CrossRef
  23. Huang, F, Rock, JR, Harfe, BD, Cheng, T, Huang, X, Jan, YN, and Jan, LY (2009). Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A. 106, 21413-21418.
    Pubmed KoreaMed CrossRef
  24. Huang, F, Zhang, H, Wu, M, Yang, H, Kudo, M, Peters, CJ, Woodruff, PG, Solberg, OD, Donne, ML, Huang, X, Sheppard, D, Fahy, JV, Wolters, PJ, Hogan, BL, Finkbeiner, WE, Li, M, Jan, YN, Jan, LY, and Rock, JR (2012). Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A. 109, 16354-16359.
    Pubmed KoreaMed CrossRef
  25. Huang, WC, Xiao, S, Huang, F, Harfe, BD, Jan, YN, and Jan, LY (2012). Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron. 74, 179-192.
    Pubmed KoreaMed CrossRef
  26. Jeon, JH, Paik, SS, Chun, MH, Oh, U, and Kim, IB (2013). Presynaptic localization and possible function of calcium-activated chloride channel anoctamin 1 in the mammalian retina. PLoS One. 8, e67989.
    Pubmed KoreaMed CrossRef
  27. Jeon, JH, Park, JW, Lee, JW, Jeong, SW, Yeo, SW, and Kim, IB (2011). Expression and immunohistochemical localization of TMEM16A/anoctamin 1, a calcium-activated chloride channel in the mouse cochlea. Cell Tissue Res. 345, 223-230.
    Pubmed CrossRef
  28. Leclerc, N, Beesley, PW, Brown, I, Colonnier, M, Gurd, JW, Paladino, T, and Hawkes, R (1989). Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J Comp Neurol. 280, 197-212.
    Pubmed CrossRef
  29. Lee, B, Cho, H, Jung, J, Yang, YD, Yang, DJ, and Oh, U (2014). Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol Pain. 10, 5.
    Pubmed KoreaMed CrossRef
  30. Liu, B, Linley, JE, Du, X, Zhang, X, Ooi, L, Zhang, H, and Gamper, N (2010). The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl− channels. J Clin Invest. 120, 1240-1252.
    Pubmed KoreaMed CrossRef
  31. Llinás, RR, and Walton, KD (1998). Cerebellum. The Synaptic Organization of the Brain, Shepherd, GM, ed. Oxford: Oxford University Press, pp. 255-288
  32. Namkung, W, Phuan, PW, and Verkman, AS (2011). TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem. 286, 2365-2374.
    KoreaMed CrossRef
  33. Neureither, F, Ziegler, K, Pitzer, C, Frings, S, and Möhrlen, F (2017). Impaired motor coordination and learning in mice lacking anoctamin 2 calcium-gated chloride channels. Cerebellum. 16, 929-937.
    Pubmed KoreaMed CrossRef
  34. Ousingsawat, J, Martins, JR, Schreiber, R, Rock, JR, Harfe, BD, and Kunzelmann, K (2009). Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J Biol Chem. 284, 28698-28703.
    Pubmed KoreaMed CrossRef
  35. Romanenko, VG, Catalan, MA, Brown, DA, Putzier, I, Hartzell, HC, Marmorstein, AD, Gonzalez-Begne, M, Rock, JR, Harfe, BD, and Melvin, JE (2010). Tmem16A encodes the Ca2+-activated Cl− channel in mouse submandibular salivary gland acinar cells. J Biol Chem. 285, 12990-13001.
    Pubmed KoreaMed CrossRef
  36. Schreiber, R, Faria, D, Skryabin, BV, Wanitchakool, P, Rock, JR, and Kunzelmann, K (2015). Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch. 467, 1203-1213.
    CrossRef
  37. Schroeder, BC, Cheng, Y, Jan, YN, and Jan, LY (2008). Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 134, 1019-1029.
    Pubmed KoreaMed CrossRef
  38. Scudieri, P, Caci, E, Bruno, S, Ferrera, L, Schiavon, M, Sondo, E, Tomati, V, Gianotti, A, Zegarra-Moran, O, Pedemonte, N, Rea, F, Ravazzolo, R, and Galietta, LJ (2012). Association of TMEM16A chloride channel over-expression with airway goblet cell metaplasia. J Physiol. 590, 6141-6155.
    Pubmed KoreaMed CrossRef
  39. Stephan, AB, Shum, EY, Hirsh, S, Cygnar, KD, Reisert, J, and Zhao, H (2009). ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A. 106, 11776-11781.
    Pubmed KoreaMed CrossRef
  40. Stöhr, H, Heisig, JB, Benz, PM, Schöberl, S, Milenkovic, VM, Strauss, O, Aartsen, WM, Wijnholds, J, Weber, BH, and Schulz, HL (2009). TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci. 29, 6809-6818.
    Pubmed CrossRef
  41. Sun, H, Xia, Y, Paudel, O, Yang, XR, and Sham, JS (2012). Chronic hypoxia-induced upregulation of Ca2+-activated Cl− channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. J Physiol. 590, 3507-3521.
    Pubmed KoreaMed CrossRef
  42. Takayama, Y, Uta, D, Furue, H, and Tominaga, M (2015). Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc Natl Acad Sci U S A. 112, 5213-5218.
    Pubmed KoreaMed CrossRef
  43. Wolf, HK, Buslei, R, Schmidt-Kastner, R, Schmidt-Kastner, PK, Pietsch, T, Wiestler, OD, and Blümcke, I (1996). NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem. 44, 1167-1171.
    Pubmed CrossRef
  44. Yang, YD, Cho, H, Koo, JY, Tak, MH, Cho, Y, Shim, WS, Park, SP, Lee, J, Lee, B, Kim, BM, Raouf, R, Shin, YK, and Oh, U (2008). TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455, 1210-1215.
    Pubmed CrossRef
  45. Zhang, W, Schmelzeisen, S, Parthier, D, Frings, S, and Möhrlen, F (2015a). Anoctamin calcium-activated chloride channels may modulate inhibitory transmission in the cerebellar cortex. PLoS One. 10, e0142160.
    CrossRef
  46. Zhang, XD, Lee, JH, Lv, P, Chen, WC, Kim, HJ, Wei, D, Wang, W, Sihn, CR, Doyle, KJ, Rock, JR, Chiamvimonvat, N, and Yamoah, EN (2015b). Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl− channel TMEM16A. Proc Natl Acad Sci U S A. 112, 2575-2580.
    CrossRef
  47. Zhang, Y, Zhang, Z, Xiao, S, Tien, J, Le, S, Le, T, Jan, LY, and Yang, H (2017). Inferior olivary TMEM16B mediates cerebellar motor learning. Neuron. 95, 1103-1111.
    Pubmed KoreaMed CrossRef


December 2018, 48 (4)
Full Text(PDF) Free

Social Network Service
Services

Cited By Articles

Author ORCID Information

Funding Information
  • Science Central
  • CrossMark
  • Crossref TDM