Apps, R, and Garwicz, M (2005). Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 6, 297-311.
Barmack, NH, and Yakhnitsa, V (2011). Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum. Neuroscientist. 17, 221-236.
Billig, GM, Pál, B, Fidzinski, P, and Jentsch, TJ (2011). Ca2+-activated Cl− currents are dispensable for olfaction. Nat Neurosci. 14, 763-769.
Bloedel, JR, and Bracha, V (2009). Cerebellar functions. Encyclopedic Reference of Neuroscience, Binder, MD, Hirokawa, N, and Windhorst, U, ed. Heidelberg: Springer-Verlag, pp. 667-671
Borst, JG, and Sakmann, B (1995). Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol. 489, 825-840.
Buchholz, B, Faria, D, Schley, G, Schreiber, R, Eckardt, KU, and Kunzelmann, K (2014). Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst-forming epithelial cells. Kidney Int. 85, 1058-1067.
Bulley, S, Neeb, ZP, Burris, SK, Bannister, JP, Thomas-Gatewood, CM, Jangsangthong, W, and Jaggar, JH (2012). TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ Res. 111, 1027-1036.
Caputo, A, Caci, E, Ferrera, L, Pedemonte, N, Barsanti, C, Sondo, E, Pfeffer, U, Ravazzolo, R, Zegarra-Moran, O, and Galietta, LJ (2008). TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 322, 590-594.
Catalan, MA, Kondo, Y, Pena-Munzenmayer, G, Jaramillo, Y, Liu, F, Choi, S, Crandall, E, Borok, Z, Flodby, P, Shull, GE, and Melvin, JE (2015). A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc Natl Acad Sci U S A. 112, 2263-2268.
Cherkashin, AP, Kolesnikova, AS, Tarasov, MV, Romanov, RA, Rogachevskaja, OA, Bystrova, MF, and Kolesnikov, SS (2016). Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells. Pflugers Arch. 468, 305-319.
Cho, H, and Oh, U (2013). Anoctamin 1 mediates thermal pain as a heat sensor. Curr Neuropharmacol. 11, 641-651.
Cho, H, Yang, YD, Lee, J, Lee, B, Kim, T, Jang, Y, Back, SK, Na, HS, Harfe, BD, Wang, F, Raouf, R, Wood, JN, and Oh, U (2012). The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci. 15, 1015-1021.
Cho, SJ, Jeon, JH, Chun, DI, Yeo, SW, and Kim, IB (2014). Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 357, 563-569.
Dauner, K, Möbus, C, Frings, S, and Möhrlen, F (2013). Targeted expression of anoctamin calcium-activated chloride channels in rod photoreceptor terminals of the rodent retina. Invest Ophthalmol Vis Sci. 54, 3126-3136.
Davis, AJ, Shi, J, Pritchard, HA, Chadha, PS, Leblanc, N, Vasilikostas, G, Yao, Z, Verkman, AS, Albert, AP, and Greenwood, IA (2012). Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh)-A01. Br J Pharmacol. 168, 773-784.
Delvendahl, I, and Hallermann, S (2016). The cerebellar mossy fiber synapse as a model for high-frequency transmission in the mammalian CNS. Trends Neurosci. 39, 722-737.
Eggermont, J (2004). Calcium-activated chloride channels: (un)known, (un) loved?. Proc Am Thorac Soc. 1, 22-27.
Faria, D, Rock, JR, Romao, AM, Schweda, F, Bandulik, S, Witzgall, R, Schlatter, E, Heitzmann, D, Pavenstadt, H, Herrmann, E, Kunzelmann, K, and Schreiber, R (2014). The calcium-activated chloride channel anoctamin 1 contributes to the regulation of renal function. Kidney Int. 85, 1369-1381.
Frings, S, Reuter, D, and Kleene, SJ (2000). Neuronal Ca2+-activated Cl− channels: homing in on an elusive channel species. Prog Neurobiol. 60, 247-289.
Forsythe, ID, and Barnes-Davies, M (1993). The binaural auditory pathway: membrane currents limiting multiple action potential generation in the rat medial nucleus of the trapezoid body. Proc Biol Sci. 251, 143-150.
Ha, GE, Lee, J, Kwak, H, Song, K, Kwon, J, Jung, SY, Hong, J, Chang, GE, Hwang, EM, Shin, HS, Lee, CJ, and Cheong, E (2016). The Ca2+-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat Commun. 7, 13791.
Hartzell, C, Putzier, I, and Arreola, J (2005). Calcium-activated chloride channels. Annu Rev Physiol. 67, 719-758.
Huang, F, Rock, JR, Harfe, BD, Cheng, T, Huang, X, Jan, YN, and Jan, LY (2009). Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A. 106, 21413-21418.
Huang, F, Zhang, H, Wu, M, Yang, H, Kudo, M, Peters, CJ, Woodruff, PG, Solberg, OD, Donne, ML, Huang, X, Sheppard, D, Fahy, JV, Wolters, PJ, Hogan, BL, Finkbeiner, WE, Li, M, Jan, YN, Jan, LY, and Rock, JR (2012). Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A. 109, 16354-16359.
Huang, WC, Xiao, S, Huang, F, Harfe, BD, Jan, YN, and Jan, LY (2012). Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron. 74, 179-192.
Jeon, JH, Paik, SS, Chun, MH, Oh, U, and Kim, IB (2013). Presynaptic localization and possible function of calcium-activated chloride channel anoctamin 1 in the mammalian retina. PLoS One. 8, e67989.
Jeon, JH, Park, JW, Lee, JW, Jeong, SW, Yeo, SW, and Kim, IB (2011). Expression and immunohistochemical localization of TMEM16A/anoctamin 1, a calcium-activated chloride channel in the mouse cochlea. Cell Tissue Res. 345, 223-230.
Leclerc, N, Beesley, PW, Brown, I, Colonnier, M, Gurd, JW, Paladino, T, and Hawkes, R (1989). Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J Comp Neurol. 280, 197-212.
Lee, B, Cho, H, Jung, J, Yang, YD, Yang, DJ, and Oh, U (2014). Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol Pain. 10, 5.
Liu, B, Linley, JE, Du, X, Zhang, X, Ooi, L, Zhang, H, and Gamper, N (2010). The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl− channels. J Clin Invest. 120, 1240-1252.
Llinás, RR, and Walton, KD (1998). Cerebellum. The Synaptic Organization of the Brain, Shepherd, GM, ed. Oxford: Oxford University Press, pp. 255-288
Namkung, W, Phuan, PW, and Verkman, AS (2011). TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem. 286, 2365-2374.
Neureither, F, Ziegler, K, Pitzer, C, Frings, S, and Möhrlen, F (2017). Impaired motor coordination and learning in mice lacking anoctamin 2 calcium-gated chloride channels. Cerebellum. 16, 929-937.
Ousingsawat, J, Martins, JR, Schreiber, R, Rock, JR, Harfe, BD, and Kunzelmann, K (2009). Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J Biol Chem. 284, 28698-28703.
Romanenko, VG, Catalan, MA, Brown, DA, Putzier, I, Hartzell, HC, Marmorstein, AD, Gonzalez-Begne, M, Rock, JR, Harfe, BD, and Melvin, JE (2010). Tmem16A encodes the Ca2+-activated Cl− channel in mouse submandibular salivary gland acinar cells. J Biol Chem. 285, 12990-13001.
Schreiber, R, Faria, D, Skryabin, BV, Wanitchakool, P, Rock, JR, and Kunzelmann, K (2015). Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch. 467, 1203-1213.
Schroeder, BC, Cheng, Y, Jan, YN, and Jan, LY (2008). Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 134, 1019-1029.
Scudieri, P, Caci, E, Bruno, S, Ferrera, L, Schiavon, M, Sondo, E, Tomati, V, Gianotti, A, Zegarra-Moran, O, Pedemonte, N, Rea, F, Ravazzolo, R, and Galietta, LJ (2012). Association of TMEM16A chloride channel over-expression with airway goblet cell metaplasia. J Physiol. 590, 6141-6155.
Stephan, AB, Shum, EY, Hirsh, S, Cygnar, KD, Reisert, J, and Zhao, H (2009). ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A. 106, 11776-11781.
Stöhr, H, Heisig, JB, Benz, PM, Schöberl, S, Milenkovic, VM, Strauss, O, Aartsen, WM, Wijnholds, J, Weber, BH, and Schulz, HL (2009). TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci. 29, 6809-6818.
Sun, H, Xia, Y, Paudel, O, Yang, XR, and Sham, JS (2012). Chronic hypoxia-induced upregulation of Ca2+-activated Cl− channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. J Physiol. 590, 3507-3521.
Takayama, Y, Uta, D, Furue, H, and Tominaga, M (2015). Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc Natl Acad Sci U S A. 112, 5213-5218.
Wolf, HK, Buslei, R, Schmidt-Kastner, R, Schmidt-Kastner, PK, Pietsch, T, Wiestler, OD, and Blümcke, I (1996). NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem. 44, 1167-1171.
Yang, YD, Cho, H, Koo, JY, Tak, MH, Cho, Y, Shim, WS, Park, SP, Lee, J, Lee, B, Kim, BM, Raouf, R, Shin, YK, and Oh, U (2008). TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455, 1210-1215.
Zhang, W, Schmelzeisen, S, Parthier, D, Frings, S, and Möhrlen, F (2015a). Anoctamin calcium-activated chloride channels may modulate inhibitory transmission in the cerebellar cortex. PLoS One. 10, e0142160.
Zhang, XD, Lee, JH, Lv, P, Chen, WC, Kim, HJ, Wei, D, Wang, W, Sihn, CR, Doyle, KJ, Rock, JR, Chiamvimonvat, N, and Yamoah, EN (2015b). Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl− channel TMEM16A. Proc Natl Acad Sci U S A. 112, 2575-2580.
Zhang, Y, Zhang, Z, Xiao, S, Tien, J, Le, S, Le, T, Jan, LY, and Yang, H (2017). Inferior olivary TMEM16B mediates cerebellar motor learning. Neuron. 95, 1103-1111.